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Graphene, a single graphite layer, is
emerging as an extremely versatile
material with outstanding proper-

ties suitable for spintronics and nanodevice
applications.1-3 Nevertheless, such propo-
sed applications of graphene require the
ability to tune its electronic or magnetic pro
perties at the nanoscale.4,5 Although charge
transfer and field-effect doping can be
applied tomanipulate charge carrier concen-
trations, how to achieve nanoscale control
remains a challenge.6,7 One of the alterna-
tive approaches is to introduce extended
defects into the graphene lattice.8 These
defects are often characterized by pentago-
nal and heptagonal rings in the hexagonal
carbon lattice and can be introduced by
irradiation to alter their properties for suita-
ble applications.9-11 In particular, ferromag-
netic ordering has been shown to exist
among various defect configurations in gra-
phene structures, such as vacancies, topo-
logical defects, edges, and hydrogen che-
misorption.12-16 To this end, a new type of
one-dimensional topological defect in gra-
phene, containing octagonal and pentago-
nal sp2-hybridized carbon rings embedded
in a perfect graphene sheet, has recently
been produced experimentally. This new
line defect structure is found to be ametallic
wire and may play important roles in device
application.17 Theoretical calculations based
on density functional theory have revealed
intriguing electronic and magnetic proper-
ties of graphene and carbon nanotubes
containing one-dimensional defect struc-
tures.18-20 The controlled engineering of
these defects represents a viable approach
to creating and nanoscale controlling of
one-dimensional charge distribution within
widths of only several atoms.
A topic of considerable recent interest is

the study of the interplay between the
mechanical properties of graphene and its
electronic/magnetic structure. The motiva-
tion for these studies is the possibility of

tailoring the transport properties of gra-
phene bymeans of externally induced strain.
In previous studies, several groups have
shown that the electronic spectrum of gra-
phene can be strongly modified by external
strain.21-23 In particular, a strain over 20% in
graphene might eventually lead to the ope-
ning of a band gap.24 The effects of external
strain on magnetic properties localized on
the edge of zigzag graphene nanoribbons
also have been explored.25-27 These studies
suggest the potential of strain as a way for
tuning the electronic and magnetic proper-
ties of graphene.
In the present work, we employ first-

principles calculations based on density
functional theory to elucidate the effects
of strain on magnetic properties of gra-
phene with topological line defect. Similar
to carbon nanotubeswith such a line defect,
the ground state of the defective graphene
is ferromagnetic with small magnetic
moments; the polarized electron spins are
localized around the defect sites and
ferromagnetically aligned along the ex-
tended line defect. We first examine the
electronic and magnetic properties of the
defective graphene in equilibrium, but our
primary objective is to explore the effect of
external strain on the magnetic properties
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ABSTRACT We examine the magnetic properties of two-dimensional graphene with topological

line defect using first-principles calculations and predict a weak ferromagnetic ground state with

spin-polarized electrons localized along the extended line defect. Our results show that tensile strain

along the zigzag direction can greatly enhance local magnetic moments and ferromagnetic stability

of the system. In sharp contrast, tensile strain applied along the armchair direction quickly

diminishes these magnetic moments. A detailed analysis reveals that this intriguing magnetism

modulation by strain stems from the redistribution of spin-polarized electrons induced by local

lattice distortion. It suggests a sensitive and effective way to control magnetic properties of

graphene which is critical for its applications in nanoscale devices.

KEYWORDS: graphene • topological line defect • magnetism modulation • strain
control

A
RTIC

LE



KOU ET AL. VOL. 5 ’ NO. 2 ’ 1012–1017 ’ 2011 1013

www.acsnano.org

of the system. We find that tensile strain along the
zigzag direction of graphene greatly increases the
electron localization, leading to the enhancement of
the stability of the ferromagnetic state and the mag-
netic moments along the line defect over a large range
of strain. However, further increase of strain results in a
sharp reduction of the magnetic moments and the
stability of the magnetic state. This effective modula-
tion of magnetism occurs within the range of the
elastic limit of graphene and, therefore, is fully rever-
sible. In sharp contrast, tensile strain along the arm-
chair direction produces the opposite effect (i.e.,
diminishing the magnetic moments). Such sensitive
modulation for magnetism holds great promise for
applications of the graphene systems in nanoscale
devices, especially those related to spintronics.

RESULTS AND DISCUSSION

Graphene with a topological line defect is metallic
with a flat band crossing the Fermi level according to
non-spin-polarized calculations.17 Previous studies12-16

show that such defects are closely associated with
magnetism. Our calculations demonstrate that, when
the spin polarization of atomic orbits is included in the
calculations, a ferromagnetic ground state is always
obtained after the self-consistent computation. This
is the case even when an initial antiferromagnetic
arrangement is chosen as the starting point. The spatial
spin density distribution (FV-Fv) of a fully relaxed gra-
phene structure is shown in Figure 1a. It is seen that the

spin-polarized electrons are localized in the region of
the line defect, clearly exhibiting a ferromagnetic spin-
ordering state. It decays rapidly with increasing dis-
tance away from the line defect. The spin-polarized
band structure is also presented in Figure 1c. It shows a
spin splitting flat band near the Fermi level, which loses
its flatness at about k = π/2 and exhibits a substantial
dispersion around the zone boundary. The flat band
results from a delicate balance of electron transfers
among the π orbitals situated near the topological line
defect. From the structural character and spin-polar-
ized electron distribution, the structure of graphene
with topological line defect can be regarded as a
combination of two zigzag graphene ribbons “glued”
together by an array of C2 at their zigzag edge sites.
Therefore, the origin of the flat band states of graphene
with line defect can be understood as a result of the
edge states of the zigzag graphene nanoribbons.18

Since the localized spin polarization in the line defect
region may be affected by the neighboring line defect,
it is necessary to investigate the effect of the length
L between two adjacent line defects. We have exam-
ined three structural models with L = 1.414, 2.267, and
2.977 nm. The calculated magnetic moments are 0.14,
0.028, and 0.030 μB respectively. These results indicate
that the magnetism is no longer affected by the
adjacent line defect when the supercell length L in
the armchair direction is larger than 2.267 nm. We
therefore will focus our discussions below on the
model with L = 2.267 nm.

Figure 1. (a) Schematic illustration of the structural model of the relaxed two-dimensional graphene with an extended
topological line defect. The shaded area covered by the dashed rectangle is the unit supercell (L = 2.977 nm) used in the
present calculations. The spatial spin density distribution (FV-Fv) is also plotted (spin-up, green; spin-down, red this
color identification scheme is also used in other figures below). The value of the isosurface is 1� 10-4 e/Å3. The spin-polarized
band structures of the graphene sheet with topological line defect (spin-up, black; spin-down, red) are shown for (b) 5%
tensile strain along the zigzag direction, (c) 0% strain, and (d) 5% tensile strain along the armchair direction. Because the
magnetism is originated from the spin splitting of the flat band near the Fermi level, only the band structures from Γ to A
are presented.
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In order to clarify the stability of the graphene with
a topological line defect, we have investigated the
binding energies and compared with those for defect-
free graphene. Here the binding energy is defined as
Eb= (Etot- nEC)/n, where Etot and EC are the total energy
of the investigated system and that of a C atom, res-
pectively; n is the number of C atoms. Figure 2 shows
the results for the defective graphene as a function of
supercell length L together with those of perfect gra-
phene. It is seen that the binding energy of the gra-
phenewith a topological line defect is notmuch higher
than that of perfect graphene and monotonically dec-
reases with increasing supercell length. The binding
energy of the defective graphene with L = 2.977 nm is
only slightly higher (by 46.3 meV/atom) than that of
the perfect graphene. These results indicate that the
energy cost of introducing topological line defect to
graphene is insignificant and, in particular, is unlikely to
cause any problems for the structural integrity of the
defective graphene.
We nowexamine the effect of strain on themagnetic

properties. Due to the Poisson effect, stretching in one
direction of the graphenewill lead to contraction in the
perpendicular direction; hence, in this study, the uni-
axial strain is applied as follows:

ε ¼ ε 0
0 - vε

� �

where v is the Poisson ratio of graphene and ε is tensile
strain. Following the results of previouswork,21 we take
v= 0.165. As shown in Figure 3a, tensile strain along the
zigzag direction has a significant effect on the mag-
netic properties. The magnetic moment exhibits a
nearly linear relationship with increasing tensile strain
at the early stage. As the strain increases to around 4%,
the increase of the magnetic moment levels off before
rising again with further increasing strain. After reach-
ing a critical strain of about 12% (for L = 2.267 nm),
further stretching leads to a sharp decline of the
magnetic moment. Similar behavior of magnetism
modulation is also observed in other models that we

have considered (see, for example, the results for the
structure with L = 1.414 nm also shown in Figure 3).
Our calculations show that the ferromagnetic gro-

und state in graphene with a topological line defect is
not very stable (only a fewmillielectronvolts lower than
the nonmagnetic state at zero strain). It is similar to the
situation in armchair carbon nanotubes with a topolo-
gical line defect.13 This makes it impractical to use such
graphene structures for device applications operating
at room temperature conditions. To obtain robust mag-
netism suitable for applications, it is necessary to
achieve a more stable magnetic state in the graphene
system. Our calculations indicate that tensile strain
along the zigzag direction provides a very effective
solution: it enhances both the stability of the magnetic
state and the magnetic moment of the defective
graphene. The energy difference, defined as ΔE =
ENonmag - EFerro-mag, as a function of applied strain is
presented in Figure 3b (solid line), where ENonmag and
EFerro-mag are the total energies of nonmagnetic and
ferromagnetic states, respectively. It is interesting to
see that the energy difference displays a very similar
behavior to the magnetic modulation in response to
applied strain along the zigzag direction. The max-
imum energy difference reaches 32.5 meV, which rep-
resents a more than 10-fold increase compared to the
value for the unstrained state. It is noted that, while the
sharp changes of the energy difference and the mag-
netic moment occur at the same critical strain, the
value of the critical strain decreases with increasing L.
For example, the critical strain is 14% for L = 1.414 nm

Figure 2. Binding energy per atom of the graphene with
topological line defect as a function of the supercell length
compared to that of perfect graphene.

Figure 3. (a) Magnetic moment and (b) corresponding
ferromagnetic stability (solid line) and strain energy (hollow
line) as a functionof applied strain along the zigzagdirection.
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but reduces to 12% for L = 2.267 nm. Interestingly,
although the magnetic behavior undergoes a sharp
variation at the critical strain, it is not associated with a
structural breakage or phase transition. As shown in
Figure 3b, the strain energy increases as a quadratic
function of strain even after the magnetic moments
have diminished. This indicates that the magnetic
modulation occurs within the elastic range and, there-
fore, is fully reversible. This feature is significant for
practical nanomechanical control of the magnetic pro-
perties of the graphene system in device applications.
The enhancement of spin polarization under strain

can be explained by an analytical model proposed by
Fujita et al.25 For localized states along a line defect, the
corresponding charge density is proportional to 2
cos(k/2)2m at each site of the mth zigzag chain away
from the C2 array. The factor 2 cos(k/2) represents a
“damping length” of the localized states. When strain is
applied, due to the distortions of the bond vector and
the bond parameter, this damping factor is modified21

to 2t2/t1 cos(k/2), where t1 and t2 are bond parameters
related to the bond vectors r1 and r2 shown in
Figure 1a. For tensile strain along the zigzag direction,
|t2/t1| < 1, the damping of localized states becomes
much quicker, which results in more localized states
along the line defect. Due to the electron-electron
interaction, this will lead to a larger spin splitting of the
band states near the Fermi level (Figure 1b), thus in-
creasing the spin polarization in the region of the line
defect. This picture is supported by our calculated spin
density difference between strained and unstrained
conditions, as shown in Figure 4b. In contrast, when a
tensile strain is applied along the armchair direction,
|t2/t1| > 1, and the damping of the localized states beco-
mes much slower, resulting in the delocalization of such

states with reduced electron correlation. Consequently,
the band states near the Fermi level are non-spin-
polarized, as shown in Figure 1d.
The above analytical model provides an explanation

for the variation of magnetism under applied tensile
strain along the zigzag or armchair direction when the
graphene is considered as a combination of two (semi-
infinite) zigzag nanoribbons. Meanwhile, it is noted
that there is a sharp drop inmagneticmoment at larger
tensile strains along the zigzag direction. It is closely
related to the variation of the local bond length at the
defect sites where the spin-polarized electrons are
localized. We explore this mechanism by examining
the variation of the bond lengths near the defect line in
response to applied strain. We focus on the response of
two key bonds in the structure, as shown in Figure 4. It
is seen that, before the strain reaches the critical value
of about 12%, both bond lengths l1 and l2 increase
monotonically with strain, which, according to the
above-mentioned model studies,18,19 would lead to
increased electron localization and splitting of the sta-
tes with opposite spin. This analysis is consistent with
our calculated results that show a clear increase of
spin-up state and decrease of spin-down state loca-
lized on the “zigzag edge atoms”. It enhances the spin
polarization along the line defect (see Figure 4b for
spin density change at 12% strain compared to the
results of the unstrained system). It is interesting to
note that when strain reaches about 4% the two bond
lengths intersect. This explains the appearance of a
plateau in the plot of magnetic moment around 4%
strain (see Figure 3a): it can be attributed to a delicate
balance and competing nature of electron (de)locali-
zation and transfer resulting from the variations of
these two bond lengths under the applied strain.

Figure 4. (a) Local bond length variation around the line defect regionwhere themagnetism is localized. Definitions of l1 and
l2 are given in the inset. The right panels show the spin density redistribution induced by applied strain: (b) F(12%)- F(0%)
and (c) F(12.5%) - F(0%). Insets in (b) and (c) present the spin density contour plots in the corresponding strain state.
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Interestingly, when the strain exceeds 12%, the two
bond lengths experience an abrupt change: l1 sudd-
enly increases while l2 sharply decreases. By examining
the spin-polarized electron transfer at 12.5% (Figure 4c)
and comparingwith those at 12% strain (Figure 4b), we
find that such sudden variations of bond lengths
induce significant redistribution of spin-polarized elec-
trons, resulting in much less transfer of spin-polarized
electrons to the “zigzag edge atoms” at 12.5% strain, as
a consequence the electron delocalization induced by
the sharp reduction of l2. This leads to the decreased
spin splitting and diminishing magnetic moments.
For a more comprehensive picture of strain effect,

we also studied the magnetic modulation by tensile
strain along the armchair direction. Contrary to the
results by tensile strain along the zigzag direction, the
weak magnetism in the unstrained structure quickly
diminishes by the applied strain. It is caused by the
electron delocalization due to the bond length change
as discussed above and the accompanying reduction
in spin polarization in the line defect region, resulting
in a nonmagnetic state. The system remains in this
nonmagnetic state until a structural breakage occurs at
larger strains (see Figure 5a) when the defective gra-
phene breaks into two (semi-infinite) graphene nano-
ribbons, one with a zigzag edge and the other with an

armchair-like (pentagon) edge. A large spin polariza-
tion is localized on the zigzag edge but none on the
armchair-like edge, leading to a large local magnetic
moment. Meanwhile, the strain energy also undergoes
a sudden change due to the structural breakage and so
does the energy difference between the nonmagnetic
and ferromagnetic states (Figure 5b).

CONCLUSION

Our first-principles calculations predict a ferromag-
netic ground state for graphene with topological line
defect with spin-polarized electrons localized within
the extended line defect region. The weak magnetism
and its stability can be enhanced greatly by strain app-
lied along the zigzag direction but is sharply reduced
when the strain is over a critical value. In sharp contrast,
tensile strain along the armchair direction reduces the
magnetism before structural breakage. A detailed ana-
lysis of our calculated results indicates that this strain-
induced intriguing magnetic modulation is related to
changes in electron correlation and the accompanying
redistribution of spin polarization arising from local
bond length variation in the line defect region. The
tunable magnetism and its stability via strain control
make such defective graphene a promising candidate
for applications in future spintronic nanodevices.

METHODS
Our calculations are performed using the SIESTA package28

with the local spin density approximation (LSDA) for the
exchange correlation function.29 The double-ζ polarized
numerical atomic orbital basis sets for C are used. All atoms
are allowed to relax until the force on each atom is less than
0.02 eV/Å. The Brillouin integration is sampled with 10� 10� 1
Monkhorstmeshes. An equivalent planewave cutoff of 300 Ry is
chosen in the simulations. Vacuum layers of at least 10 Å are
chosen in the thickness direction. A representative graphene
model with topological line defect is shown in Figure 1a, in
which octagons and pentagons are alternatively aligned paral-
lel to the zigzag direction.
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